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Abstract

This paper presents a nonlinear hybrid Model Predictive Control (MPC) approach for building energy
systems based on Modelica. The MPC approach takes into account two characteristics that are very common
for building energy systems: nonlinearities (inherent in the building envelope and Heating, Ventilation
and Air Conditioning (HVAC) systems) and discontinuities (in the form of on/ off operation, discrete
operation states and operation modes). The hybrid MPC approach integrates both continuous and discrete
optimization variables into the control concept and thus is capable of controlling building energy systems
with binary or integer decision variables, switching dynamics or logic if-then-else constraints. By employing a
time-variant linearization approach, nonlinear Modelica optimization problems are approximated with high
accuracy and transformed into a linearized state-space representation. Based on the linearization output,
a linearized optimization problem is generated automatically in every MPC iteration, which is extensible
by various integer characteristics and is accessible for a wide range of mixed-integer solvers. A simulation
study on a nonlinear Modelica building energy system demonstrates the control quality of the proposed
toolchain revealing a small linearization error and successful integration of multiple integer characteristics.
The benefits of the approach are manifested by comparing its performance with different reference control
strategies.
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BLT Block-Lower Triangular
CCA Concrete Core Activation
CIA Combinatorial Integral Approximation
COP Coefficient Of Performance
DAE Differential Algebraic Equations
DP Dynamic Programming
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FMI Functional Mockup Interface
FMU Functional Mockup Unit
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GDP Generalized Disjunctive Programming
HVAC Heating, Ventilation and Air Conditioning
KPI Key Performance Indicator
LP Linear Program
LTI Linear Time-invariant
LTV Linear Time-variant
MILP Mixed-Integer Linear Program
MINLP Mixed-Integer Nonlinear Program
MIQCP Mixed-Integer Quadratically-Constrained Program
MIQP Mixed-Integer Quadratic Program
MLD Mixed Logical Dynamical
MPC Model Predictive Control
NLP Nonlinear Program
PID Proportional-Integrative-Differential
PSO Particle Swarm Optimization
QP Quadratic Program
RBC Rule-Based Control
RMSE Root Mean Square Error
SLP Sequential Linear Programming
SQP Sequential Quadratic Programming
TABS Thermally Activated Building Systems
UCP Unit Commitment Problem

Subscripts
approx approximated
bin binary
cond condenser
cons consumer
el electrical
eva evaporator
HP heat pump
in inlet
op optimization
quad quadratic
ref reference
stor storage

1. Introduction

Approximately 40 % of the final energy consumption and 36 % of all CO2 emissions in the European
Union are attributed to the building sector [1, 2]. Long-term goals set by the EU aim at a reduction of
greenhouse gas emissions by 2030 by at least 50 % compared to 1990, energy consumption reduction by 2050
by at least 50 % compared to 2005 and a carbon-neutral building stock by 2050 [2, 3]. Heating, Ventilation5

and Air Conditioning (HVAC) systems, which are responsible for providing comfort to the building users,
contribute to a major extent to the energy used in buildings [4, 5]. Accordingly, they hold a large potential
for a significant increase of building energy efficiency and reduction of energy consumption. The control of
HVAC systems is complex due to inherent nonlinear dynamics with time-delays, time-varying set-points and
disturbances and a high number of interactions [6]. Traditionally, building energy systems are controlled10

by Rule-Based Control (RBC) (on/ off or bang-bang control) or Proportional-Integrative-Differential (PID)
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controllers due to their simplicity and low computational complexity [7]. However, especially for large-scale
buildings, these control strategies are challenging to tune. Moreover, they are not able to integrate system
or comfort constraints, future disturbance quantities and to balance the conflicting optimization goals of
comfort and energy reduction.15

Model Predictive Control (MPC) is a promising control technique that demonstrates various benefits
over the classical control strategies. Its anticipatory control is based on a building energy system model,
is capable of integrating constraints and future disturbances as well as balancing conflicting optimization
goals [8]. MPC has been implemented in buildings in the form of simulative or practical studies which have
proven the simultaneous improvement of comfort and reduction of energy use. Applying MPC to an office20

building in Prague, energy savings of 15 to 28 % were obtained compared to the conventional heating curve
based control [9]. The experimental demonstration of the MPC on an HVAC system of two office buildings
in Australia resulted in energy savings of 19 % [10]. These figures coincide with other use-cases showing
more than 20 % of energy savings for a research laboratory in Illinois [11], more than 20 % of primary energy
reduction for an office building in Brussels [12] and a primary energy reduction of 17 % for a large-scale25

simulation in a Swiss office building [13].
Building energy systems exhibit a wide range of nonlinearities particularly introduced by the integrated

HVAC systems. Furthermore, building energy systems are often characterized by discontinuities in the
form of binary or integer optimization variables, operation modes including switching dynamics or logical
if-then-else relationships. Integrating both continuous and discrete decision variables requires a hybrid MPC30

concept. The combined integration of both nonlinearities and discontinuities in an optimization problem
leads to Mixed-Integer Nonlinear Programs (MINLPs) which are extremely difficult to solve. Apart from
the numerical challenges of the optimization problems, the success of implementing MPC on a large scale
strongly depends on the modeling process and efforts as this part takes up most of the time during an MPC
development against the background that every building is unique [9]. Among different modeling languages,35

Modelica stands out due to its modularity, flexibility and extensive open-source simulation libraries for
buildings and HVAC systems which are developed and maintained by experts.

This work is structured as follows. In Section 1.1, a literature review is given on nonlinear hybrid MPC
including tractable approximations of these characteristics in optimization problems. Section 1.2 details the
contributions of the proposed MPC approach. In Section 2, a building thermal zone and a coupled buffer40

storage and heat pump model are introduced which build the simulative test bed for the implementation
of the proposed nonlinear hybrid MPC. Section 3 focuses on the methodology and the different modules of
the nonlinear hybrid MPC approach. In Section 4, the MPC method is implemented on the simulative case
study and the performance is compared to different reference control strategies. The paper completes with
a conclusion and an outlook on potential extensions of the framework.45

1.1. Background

Linear MPC is the most widely applied class for MPC implementations in the building sector [14].
However, nonlinearities in buildings arise from specific physical phenomena in the building envelope (such
as heat convection, radiation or absorption and transmission of solar gains through windows) as well as from
HVAC systems (e.g. heat pumps, fans, pumps) and corresponding working curves and tables. Compared50

to linear MPC, nonlinear MPC preserves its accuracy in reproducing the building behavior over a broader
range of operating conditions. It allows for higher flexibility in the formulation of the optimization problem
including the system dynamics and cost function and enables an exploitable MPC potential closer to the
theoretical performance bound [15]. In linear MPC, often only intermediate quantities or set-points are
calculated optimizing an approximation of the cost function whereas the exact conversion into actuator55

signals is allocated to a post-processing or a suboptimal low-level controller. The use of nonlinear MPC
comes at the cost of a higher computational demand but computational power capacities are significantly
increasing within the last years based on improvements of optimization solvers and the use of server and
cloud computing [7].

Nonlinear system behavior can be approximated by linear models applying different linearization tech-60

niques and relinearization frequencies. Linearized models can be classified into linear time-invariant (LTI)
and time-variant (LTV) models. Most building MPC implementations employ optimization formulations
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based on LTI models [6]. Nonlinear models that are approximated by LTI models are linearized and approxi-
mated only once before the MPC execution (accordingly classified as offline linearization). The linearization
is generally carried out around a certain equilibrium or operation point and it is assumed that the system65

is controlled in a range close to this reference point during operation. LTI models can be calculated via
Jacobian linearization around operating points [16, 17, 18, 19] or identified based on parameter estimation
approaches [20, 21, 22]. For building envelope dynamics, Picard et al. [23] create LTI models with a special
focus on approximations for the nonlinear heat transfer phenomena of convection and radiation around a
working point. Another type of LTI model is constituted by linear piecewise models which reproduce the70

nonlinear building and HVAC behavior over a wider operating range. They are created based on lineariza-
tion around different operating points, which are representative for an operating range each and introduce
additional binary variables into the optimization problem for each operating range [24, 25].

LTV models, on the other hand, are relinearized during an MPC execution (therefore classified as on-
line linearization) and linearization reference points and corresponding linearization matrices are updated75

continuously. By updating the reference points and linearization matrices, the accuracy of the linearized
models can be increased as the operating conditions used as a reference for the approximation are adjusted
based on the behavior of the dynamic system. The classification of LTV models can be further subdivided
into linearization around a reference point or a reference trajectory.

In the case of linearization around a reference point, the linearization matrices and reference points are80

updated for every MPC iteration but remain constant during the prediction horizon of each MPC iteration.
This approach is followed by Pčolka et al. [26, 27] controlling Thermally Activated Building Systems (TABS)
fed by a hot water storage tank. In their work, auxiliary variables forming the coefficients of the linearization
matrices are introduced which are updated based on the most recent measurements representing the current
operation point in every MPC iteration.85

For the LTV models based on linearization around a reference trajectory, the reference points and
linearization matrices are updated for every MPC iteration and additionally in each MPC iteration for every
reference point along a reference trajectory. In an MPC execution, the reference trajectory can be generated
by applying the optimization results from the previous MPC iteration to the building simulation model. In
contrary to the moving horizon MPC scheme, where only the input for the first sampling period is applied, a90

simulation is conducted over the full prediction horizon to obtain new reference trajectories. Using multiple
reference points for the linearization in each MPC iteration, the nonlinear model is approximated at or close
to reference points at which the system will be operated assuming the application of the previous optimal
control inputs. By applying this relinearization technique and increasing the number of reference points
along the trajectory, the gap between the nonlinear and the linear time-invariant model is continuously95

bridged. The technique of linearizing LTV models around a reference trajectory is pursued in [28, 29]
operating a heat pump connected to a building including floor heating and a thermal storage.

A similar technique based on linearization around a trajectory can be employed to solve optimization
problems based on bilinear models. Bilinear models are created if the differential algebraic equations (DAE)
incorporate products of states and/ or control inputs. A common modeled bilinear phenomenon appears in100

ventilation models where the heating/ cooling energy supplied to a room is quantified by multiplying the
control input (mass flow rate) with the state (difference of room air temperature entering and leaving the
room (state)). The bilinear problem can be solved by Sequential Linear Programming (SLP) (for a linear
cost function; Sequential Quadratic Programming (SQP) for a quadratic cost function): During each MPC
iteration, the nonlinear optimization problem (cost and constraint functions) is iteratively linearized around105

the current solution trajectory, solved and repeated until convergence is achieved. Bilinear controller models
are presented in [30, 31] where linear models are used for the building dynamics and bilinear models for the
HVAC and shading models.

The simultaneous integration of nonlinear and integer characteristics into an optimization problem leads
to MINLPs which are extremely difficult to solve [14]. Using MINLP solvers in real-time control applications110

may fail due to computation time and intractability issues. Therefore, nonlinear hybrid MPC implemen-
tations for building energy systems generally avoid MINLPs apart from a few exceptions [32, 33]. In a
multitude of nonlinear hybrid MPC model implementations, the MINLP is converted into a Mixed-Integer
Linear Program (MILP). In a nonlinear operational optimization of a stratified thermal storage including
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switching dynamics due to different cooling modes, Berkenkamp and Gwerder [34] propose an LTV model115

relinearized in every iteration based on the previous optimization results. Feng et al. [35] and Khakimova
et al. [36] introduce LTI models as a base for a nonlinear hybrid building MPC including switching dynamics
for different operation modes. Based on offline Jacobian linearization of the nonlinear dynamics around an
operating point, Mayer et al. [19] implement a building MILP including switching dynamics depending on
the charging state of a storage and the on/ off operation state of a heat pump.120

A further technique to reduce the computational complexity of an MINLP is the decoupling of the MINLP
into subproblems which solve the overall problem by coordination or communication. In an operation of
multiple chillers and a thermal storage providing thermal demand of a campus, Deng et al. [37] split an
MINLP into a hierarchical optimization of a Dynamic Programming (DP) and an MILP problem. The DP
generates an optimal operation profile of the thermal storage which is is used as input for the MILP calcu-125

lating optimal chiller operations based on time-variant linearization of the nonlinear dynamics. Fiorentini
et al. [38] tackle an MINLP for a solar-assisted HVAC system of a residential building including switch-
ing dynamics applying a similar hierarchical procedure. The high-level optimization calculates the optimal
sequence of the operation modes and the low-level optimization optimizes the operation mode selected by
the high-level. Discrete fan speeds are introduced to eliminate the model nonlinearity in both layers. For130

control of a home energy management system, Huang et al. [39] decouple the MINLP into a particle swarm
optimization (PSO) and an SQP. In this approach, the PSO generates the initial guesses for the discrete and
continuous values to be used by the SQP which just reoptimizes the continuous variables. In an operational
optimization of a district heating system, Schweiger et al. [40] decompose the original MINLP into a unit
commit problem (UCP) formulated as Mixed-Integer Quadratically-Constrained Program (MIQCP) and135

an economic dispatch problem (EDP) formulated as Modelica-based Nonlinear Program (NLP). The UCP
calculates the optimal schedule and operation status for all productions units which is used as input for the
EDP calculating optimal control variables for the production units. Zhong et al. [41] decouple an MINLP
for an integrated electricity and heating system into an MILP for the power network and an NLP for the
heating network providing thermal comfort to a building. The overall problem is solved by a distributed140

optimization approach.
There are further approaches that propose to determine the scheduling of different operation modes in

a heuristics-based pre-processing step before a continuous optimization. Ma et al. [42] select storage tank
operation modes in a pre-optimization stage based on heuristics of the plant operation and cost including
fixing the timing of the respective modes. Based on the fixed tank operation modes the optimal chiller145

control is determined in an NLP satisfying a required cooling load. For a thermal storage management
coupled to an HVAC system and a building, Touretzky and Baldea [43] prespecify the sequence of the
operation modes within the prediction horizon. Based on the prefixed sequence, the timing and duration of
each respective operation mode is optimally determined in an NLP using exclusively continuous variables.

An alternative approach to solve an approximated form of an MINLP is developed by Bürger et al. [44]150

implementing the software package pyycombina and is applied on a solar thermal climate system coupled
to a thermal zone. In a first step, an NLP as a result of a relaxed MINLP is solved eliminating the binary
constraints. The obtained relaxed binary constraints are approximated by non-relaxed binary constraints in
a Combinatorial Integral Approximation (CIA) formulated as an MILP. In the last step, an NLP is solved
again with the fixed binary variables from the CIA to adjust the continuous variables.155

Reviewing potential modeling frameworks for MPC implementations, Modelica is a modeling language
that suits the use in an MPC realization as it is an open-source, equation-based, acausal and object-oriented
modeling language with a user-friendly graphical interface to connect components [45]. Due to the fact that
every building is unique, a modeling language is required to be flexible and modular which is fulfilled by
Modelica. In common projects, large-scale open-source Modelica simulation libraries including models of160

buildings and HVAC systems are developed and maintained by experts [46]. JModelica.org [47] is a software
tool that is capable of gradient-based optimization of Modelica models and is equipped with an interface
to IPOPT [48], an open-source solver to solve large-scale nonlinear problems. As characteristic of general
NLP solvers, IPOPT requires models to have constraints and cost functions that are twice continuously
with respect to the optimization variables. Accordingly, integer decision variables, binary on/ off variables,165

discrete operation states or operation modes are not supported. This limits the use of JModelica.org for
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building control problems where HVAC systems often include on/ off control, discrete control states, logical
if-then-else relationships or switching dynamics due to different HVAC modes. To integrate discrete, integer
or Boolean decision variables into JModelica.org, varied approaches are pursued to approximate the mixed-
integer problems by employing post-processing and heuristics [49] or by using model approximations with170

relaxed continuous decision variables and subsequent mapping [50]. Accordingly, the automatability and
applicability of JModelica.org and extensions such as TACO [50] to an arbitrary building and HVAC type
are restricted. Jorissen [50] and Schweiger et al. [51] identify the support of integer decision variables as a
major potential and challenge in the field of optimization of Modelica models.

1.2. Contribution175

The major contribution of this work consists of a nonlinear hybrid MPC approach for building en-
ergy systems based on Modelica which bridges the gap between Modelica and mixed-integer optimization.
It simultaneously accounts for the inherent nonlinearities of building energy systems and integer decision
variables. The framework supports discrete operation states, binary on/ off control, logical if-then-else
expressions, switching dynamics due to different operation modes and further building-relevant integer char-180

acteristics detailed in Section 3.2. Based on JModelica.org, a linearization module is implemented which is
capable of performing time-invariant (LTI) and time-variant linearization (LTV) around a reference point
or trajectory based on generated simulation trajectories from the previous MPC iteration. The linearization
module generates a state-space formulation of the Modelica optimization problem including a quadratic
approximation of the potentially nonlinear cost function. The resulting mathematical formulation is a self-185

contained form of the optimization problem which can be accessed and implemented into different modeling
frameworks and corresponding interfaced optimization solvers. In this framework, the linearized optimiza-
tion problem is generated automatically in Pyomo [52] in every MPC iteration based on the output of the
linearization module, extended by problem-specific integer characteristics and coupled to the state-of-the-art
MILP/ MIQP (Mixed-Integer Quadratic Program)/ MIQCP solver Gurobi [53]. As the linearization and the190

mapping of Modelica onto mathematical variables are performed automatically, there is no need for manual
model approximation or linearization, formulation of piecewise linear models or post-processing preserving
a high automatability and wide applicability of the framework in building control.

The overall framework allows for optimizing Modelica optimization problems as NLP or MILP/ MIQP/
MIQCP using IPOPT or any Pyomo-interfaced solver. It is evaluated in a holistic optimization of energy195

demand and supply of a thermal zone model supplied by a thermal buffer storage and a heat pump. In
contrary to various works on building MPC which focus on accurate modeling and optimization of either the
demand or the supply side ([54, 34, 43]), here both domains are modeled with high accuracy and optimized
in a hierarchical structure.

In summary, the innovations of this paper within the scope of MPC for building energy systems are:200

� Nonlinear hybrid MPC for building energy systems based on Modelica

� Time-variant linearization approach for nonlinear Modelica optimization problems

� Automated creation of the linearized optimization problem in Pyomo in every MPC iteration, extension
by integer characteristics and coupling to the mixed-integer optimization solver Gurobi

2. Modeling205

In this work, the open-source Modelica simulation library AixLib [55] forms the base for generating the
building controller and simulation models. Based on this library an optimization library is developed by
adjusting the AixLib models to be compatible with the used optimization framework JModelica.org and the
solver IPOPT. For more details regarding the necessary modifications of the AixLib models, the reader is
referred to [56]. Modified AixLib models are validated through comparative simulations.210

In this case study, both the energy demand and supply domain are accurately modeled and optimized.
The energy demand model is constituted by a thermal zone model. An overview of the thermal zone model
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including actuators and control inputs is given in Fig. 1. The zone model comprises a dynamic air model,
external and inner walls, windows with modeled external Venetian blinds for active solar shading [56],
simplified pumps, a convector and TABS implemented as Concrete Core Activation (CCA). The pumps215

provide heating water flows at fixed temperatures to the convector and CCA. Occupancy is taken into
account by a model calculating human heat emissions according to a characteristic office schedule (8 a.m.
– 12 p.m. and 1–6 p.m.). Weather data is used based on a historic resource file from the AixLib for San
Francisco from January 1999 which implies a heating period. Control inputs to the thermal zone are the
water mass flows to the convector and CCA as well as the vertical position and inclination angle of the220

Venetian blinds considering both thermal and visual comfort (minimum illuminance of 500 lux in occupied
times). The artificial lighting power consumption is assumed to vary linearly with the remaining required
artificial illuminance. The thermal comfort range spans from 293–295 K.

Control inputs

Convec‐
torPump

Pump

݈݁݃݊ܽ	݊݋݅ݐ݈ܽ݊݅ܿ݊ܫ

݊݋݅ݐ݅ݏ݋݌	݄݃݊݅݀ܽܵ

Weather + occupancy

Thermal  (comfort range)
+ 

visual (min. 500 Lux) 
comfort

CCA

	ݓ݋݈݂	ݏݏܽ݉	ݎ݁ݐܹܽ
ݎ݋ݐܿ݁ݒ݊݋ܿ	݋ݐ

ݏݏܽ݉	ݎ݁ݐܹܽ
ܣܥܥ	݋ݐ	ݓ݋݈݂	

Window 
incl. blinds

݈݂ܽ݅ܿ݅݅ݐݎܣ
݃݊݅ݐ݄݈݃݅	

Figure 1: Overview of the thermal zone including actuators and control inputs

The energy supply model consists of a coupled thermal buffer storage and a heat pump. The buffer
storage provides the heating power requested by the thermal zone model and couples the heating pump225

circuit with the circuit providing the heating water to the heating actuators of the thermal zone (convector
and CCA). The modeled components for the supply side can be considered characteristic of current and
future electrified heating energy systems including the need for a storage system due to the volatility of
renewable energy generation. The basic structure of the energy supply model and the integration into the
overall energy system are depicted in Fig. 2. Control inputs to the supply model (marked with a gray230

background) are the water mass flow between storage and consumer ṁstor,cons, the water mass flow through

the condenser of the heat pump ṁcond, the thermal power supplied by the condenser Q̇cond and the on/
off operation state of the heat pump δHP. Simplified pumps are modeled as ideal flow sources supplying
prescribed mass flows between storage and heat pump as well as storage and building.

Figure 2: Scheme of the energy supply model and integration in the overall energy system
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The heat pump model is based on the AixLib model AixLib.Fluid.HeatPumps.Carnot y which is refor-235

mulated by manipulating the heating power provided by the condenser Q̇cond instead of the part load ratio
of the compressor. The coefficient of performance (COP) of the heat pump quantifying the ratio of thermal
power delivered by the condenser to the electrical power added to the compressor is adjusted based on the
Carnot efficiency, which is a function of the outlet temperatures of the condenser and evaporator. When
using this model attention should be given that sufficient mass flows enter the condenser and evaporator240

otherwise high, unrealistic temperatures can occur. In this case study, only the control inputs of the con-
denser side are manipulated within the optimization problem; the controlled evaporator mass flow ṁeva

varies linearly with the evaporator thermal power and the inlet evaporator temperature Tin,eva is fixed.
The model for the buffer storage is based on the AixLib AixLib.Fluid.Storage.BufferStorage model. The

water storage is stratified into three layers, which are connected allowing heat and fluid transfer. The top245

storage layer is coupled to the water returning from the heat pump and the water circuit supplying the
consumer. This layer incorporates the highest water temperatures. The bottom storage layer is coupled to
the water supplied to the heat pump water circuit and the water returning from the consumer. The heat
transfer model HeatTransferBuoyancyWetter is used for modeling buoyancy in the storage.

The energy supply layer provides the thermal power Q̇ref(t) requested by the energy demand layer250

consisting of the thermal zone model which accounts for both the heating power supplied to the convector
and CCA. The mixed temperature of the water flow returning from convector and CCA is equal to the inlet
temperature Tin,stor,cons flowing into the storage. The scheme of the hierarchical optimization concept is
shown in Fig. 3.

Weather and
occupancy

High-Level MPC:
energy demand

Building model

Low-Level MPC:
energy supply

HVAC system

Figure 3: Hierarchical optimization approach for energy demand and supply

3. Methodology255

In order to couple the nonlinear hybrid Modelica-based MPC to a real-time capable mixed-integer solver,
a linearization tool is developed based on an extension of JModelica.org. In Section 3.1, the original lin-
earization module is extended towards a time-variant linearization around multiple reference points, which
allows for a continuously updated linearization along a simulation trajectory. The simulation trajectory is
generated by applying the optimization results from the previous MPC iteration to the simulation model.260

The extended linearization tool further creates a quadratic approximation of the original cost function and
includes inequality constraints. In the final framework execution, the linearized optimization problem is
automatically generated in Pyomo in every MPC iteration based on the output of the linearization module
and can be extended by various integer characteristics that are specified in Section 3.2.

3.1. Linearization265

The linearization approach builds on the Python submodule linearization of JModelica.org which inte-
grates CasADi [57] for automatic differentiation and calculation of first-order gradients. Input to the module
is a compiled Modelica optimization problem and a simulation trajectory from a Functional Mockup Unit
(FMU). The FMU constitutes a model unit to which the Modelica simulation model is compiled based
on PyFMI [58] of JModelica.org according to the Functional Mockup Interface (FMI) standard for the270
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exchange of compiled dynamical models between different modeling and simulation tools. In the original
linearization submodule, just a linearization approach around a reference point is implemented generating
only linearization matrices for the mathematical DAEs. The basic submodule is extended by:

� Time-variant linearization around multiple reference points along a simulation trajectory

� Quadratic approximation of the cost function275

� Integration of inequality constraints

� Saving of the linearization output in an efficient, self-contained form

� Rounding of the coefficients of the linearization matrices

The listed extensions allow for linearization of an entire optimization problem including an approximated
cost function and inequality constraints, further increase the linearized model accuracy by applying time-280

variant linearization and enhance automatability and reusability of the optimization formulation. The
different extensions are detailed in the following.

The linearization procedure starts with a grouping of the original Modelica variables into the different
variable types of state derivatives dx, states x, inputs u, algebraic variables w and potential free parameters
p. A mapping dictionary is created where every Modelica variable is mapped to a specific variable type and285

a type-specific index (for example {”BufferStorage.T” : (”w”,7)}). In the following step of the extended
linearization module, for every DAE equation, a Jacobian linearization is performed either around a refer-
ence point or a reference trajectory (= multiple reference points). For this purpose, the CasADi function
jacobian() is used. Based on the linearization matrices and reference points, a mathematical state-space
representation of the DAEs of the optimization problem is created.290

Three different settings for the relinearization frequency can be chosen for the linearization process during
an MPC execution:

� Time-invariant linearization (LTI)

� Time-variant linearization around a reference point (point-LTV)

� Time-variant linearization around a reference trajectory (trajectory-LTV)295

This allows for a flexible formulation of the Modelica optimization problem according to the nonlinearity
and dynamics of the modeled system as well as the desired model accuracy employing LTV models for
higher model accuracy and reduced linearization errors. In the time-invariant approach, the linearization
matrices and corresponding reference points are fixed throughout the MPC execution. In the time-variant
approach around a reference point (referred to as point-LTV) the matrices and reference points are updated300

for every MPC iteration but are fixed in every prediction horizon of each MPC iteration. In contrast, in
the time-variant approach around a reference trajectory (referred to as trajectory-LTV) the matrices and
reference points are both updated for every MPC iteration and in the course of each prediction horizon of
each MPC iteration around multiple reference points along a trajectory. The conceptual difference between
a time-invariant and time-variant linearization is shown in Fig. 4 based on a nonlinear function F (t) and305

multiple reference points z.
The nonlinear DAEs of the original optimization problem can be described by:

0 = F (t, dx, x, u, w, p) (1)

The resulting LTI model linearized around one time-invariant reference point z0 = (t0, dx0, x0, u0, w0, p0)
is represented by the following state-space representation:

E · (dx− dx0) = A · (x− x0) +B · (u− u0) + C · (w − w0) +D · (t− t0) +G · (p− p0) + h (2)
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Figure 4: Comparison of a time-invariant and time-variant linearization
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and h corresponding to F (t0, dx0, x0, u0, w0, p0).

The dynamics for an LTV model based on linearization around multiple reference points extend the LTI
formulation by time-varying terms for the linearization matrices and reference points z0(t) = (t0(t), dx0(t),
x0(t), u0(t), w0(t), p0(t)):315

E(t) · (dx− dx0(t)) =A(t) · (x− x0(t)) +B(t) · (u− u0(t))+

C(t) · (w − w0(t)) +D(t) · (t− t0(t)) +G(t) · (p− p0(t)) + h(t)
(3)

In the next step, a quadratic approximation of the original cost function is formed by calculating the
Jacobians and Hessians with respect to every variable type. The chosen setting of either applying a time-
invariant or time-variant (point- or trajectory-LTV) linearization of the model DAEs also applies to the
matrices and reference points of the approximated cost function. Creating the optimization problem just
based on the Jacobians results in a Linear Program (LP) whereas by using both the Jacobians and Hessians320

the cost approximation accuracy can be further increased resulting in a Quadratic Program (QP).
The time-variant formulation of the quadratic approximation of the original nonlinear cost function J

evaluated at multiple reference points is given by the second-order Taylor approximation:

Jquad,approx =
∑

z∈{dx,x,u,w,t,p}

∇J |z0(t) · (z − z0(t)) + 0.5 · (z − z0(t))
T · HJ |z0(t) · (z − z0(t)) +m(t) (4)

, where the vector z corresponds to the variable types of the optimization problem, z0(t) to the time-
varying reference points of the respective variable type, ∇J to the time-varying Jacobians, HJ to the time-325

varying Hessians and m to the time-varying cost function offset J(t0(t), dx0(t), x0(t), u0(t), w0(t), p0(t)).
In order to generate the output of the linearization module in a form that is also accessible outside the

Python script, all relevant linearization results and information are also saved to .csv and .xlsx files. The
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aggregation of all saved files provides a self-contained form of the linearized optimization problem which
can be integrated into different modeling tools and optimization solvers. Apart from the time-invariant330

or time-variant reference points, linearization and cost function matrices a .xlsx file is created containing
information about the dimensions of the respective matrices and vectors, the variable bounds, the variable
mapping and the initial state values. A focus is placed on a data-efficient way of saving by writing only the
non-zero coefficients of the linearization matrices, Jacobians and Hessians to the output file. If an index pair
of a matrix coefficient does not appear in the header of the respective .csv file it is assumed to be zero. For335

a linearized optimization in JModelica.org, there is also the possibility to automatically generate a .mop file
in the Modelica-extension language Optimica [59].

The linearization performance can be adjusted by activating a rounding scheme which performs a round-
ing for all calculated matrices and vectors according to a chosen accuracy, e.g. using just the first three
digits after the first non-zero digit. By activating the rounding a reduced amount of data is saved and the340

tractability for an optimization solver can be improved.
A benefit of the chosen approach consists in creating a linearized formulation of the optimization problem

that works without introducing intermediate or surrogate quantities or variables. The generated optimiza-
tion problem can be optimized with respect to the control inputs that are implemented in the real system.
Apart from the automatic variable mapping (Modelica variables onto mathematical variables and vice versa)345

no further pre- and post-processing is necessary. As no model approximations are necessary, the automation
degree is very high and the output of the linearization module can be used to automatically create an opti-
mization problem in a modeling language which is implemented in the proposed framework based on Pyomo.
In contrast to linear piecewise models which approximate the nonlinear system behavior via piecewise linear
functions, no additional binaries are introduced into the problem which would increase the computational350

complexity. By updating the reference points and linearization matrices for every MPC iteration and during
the prediction horizon of each MPC iteration it can be ensured that the linearization is performed around
operating points at which or close to which the system is operated. Accordingly, the linearization error can
be reduced and the model accuracy can be improved. The rounding of the matrix and vector coefficients can
balance the trade-off of model accuracy versus the saved amount of data and tractability of the optimization355

problem.

Modelica          

.mo file

Optimica

.mop file

Cost function 
and 

constraints

PyModelica compilation
to FMU

PyFMI
simulation

PyJMI compilation to
optimization problem Linearization

Linearized state-space
representation of

optimization problem

Figure 5: Linearization toolchain based on JModelica.org and Pyomo

Based on the output of the linearization module the optimization problem is automatically generated
in the developed toolchain using Pyomo and pyomo.dae [60]. The full linearization toolchain for creating
the linearized state-space representation of the optimization problem is presented in Fig. 5. The automatic
generation of the optimization problem includes dimensioning of all vectors and matrices as well as setting360

the time-(in)variant coefficients of all linearization matrices and reference points. Likewise, the variable
bounds and the approximated cost function including optional constraint softening are specified. Using
the variable map generated by the linearization module, forecasts for disturbance quantities (e.g. weather,
occupancy) or external data (e.g. energy prices) can be integrated by mapping the Modelica variables on
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the mathematical variables. After solving the optimization problem with a Pyomo-interfaced solver, the365

calculated control inputs are mapped back onto the Modelica variables and applied in an FMU simulation
of the nonlinear Modelica model over the prediction horizon. In the MPC loop, the simulation trajectory
calculated by the FMU simulation serves as the reference trajectory for the linearization step of the next
MPC iteration as shown in Fig. 6. In order to avoid excessively large dimensions of linearization matrices
and cost function Jacobians and Hessians, a variable reduction step is conducted before executing the MPC.370

A block-lower-triangular (BLT) decomposition method developed by Magnusson and Åkesson [61] in the
JModelica.org framework is employed onto the nonlinear Modelica optimization problem. Solving some of
the algebraic equations of the DAE in a preprocessing step, the number of algebraic variables and DAEs
can be significantly reduced which reduces computation time and linearized controller model complexity.

Linearized
state-space

DAEs

Nonlinear Modelica 
optimization

problem
Linearization Optimization

Simulation
results Simulation model

Inputs

Simulation 
model/ 

real buildingInputs

New MPC 
iteration k+1

Figure 6: Linearization process during the MPC execution (k: current MPC iteration index, N : prediction horizon)

3.2. Integration of integer characteristics375

Based on the linearized state-space representation of the optimization problem, the developed toolchain
enables the integration of different integer characteristics. The incorporation of at least one of the described
integer characteristics results in either an MILP (cost function based on Jacobians) or an MIQP (cost
function based on Jacobians and Hessians).

First, discrete set constraints can be applied to a variable constraining the respective values to be chosen380

from a set of discrete operation states, e.g. prescribed by the hardware. The discrete set constraint can be
formulated by:

udiscrete(t) =

Nop states∑
k=1

δk,bin(t) · sk ∀
Nop states∑

k=1

δk,bin(t) = 1 ∀t ∈ T (5)

, where udiscrete(t) corresponds to an exemplary variable constrained to adopt values from a discrete set,
Nop states to the number of elements in the discrete set, sk to the values of the discrete set and δk,bin(t) to
a binary variable indicating the activation status of each sk. The sum of the binary variables δk,bin(t) is385

constrained to be equal to 1.
A binary constraint can be integrated by restricting a variable to binary values, e.g. in case of on/ off

control behavior of system components. The binary constraint can be extended by including a minimum
part load constraint, a common phenomenon known amongst others for heat pumps [62, 63]. It for example
prescribes that a component can only be operated in a range of 30 % (minimum part load bound) to 100 %390

of the maximum power otherwise it is switched off. The minimum part load constraint can be formulated
by:

δu(t) · umin ≤ u(t) ≤ δu(t) · umax ∀t ∈ T (6)
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, where u(t) represents the constrained variable, umin the minimum part load bound, umax a potential
upper bound and δu(t) the binary on/ off state of the component.

The binary constraint can be further enhanced by integrating minimum times for a component to be395

operated in the on and/ or off state. The minimum on/ off times can be used to avoid oscillatory behavior
which could be a potential disturbance to the building user as well as to reduce wear and tear and main-
tenance costs. The formulation of this constraint is detailed in Eq. 8g and 8h of the description of the
optimization problem in Section 4.

In order to integrate building- and HVAC-characteristic operation modes into the optimization problem,400

the proposed framework makes use of Pyomo.GDP, a Pyomo extension for Generalized Disjunctive Program-
ming (GDP) [64]. GDP allows for intuitive modeling of logical propositions (e.g. if-then-else relationships)
and disjunctive relationships between sets of constraints. Different operation modes can be described by
disjuncts forming selection alternatives for the optimization problem. Pyomo.GDP integrates an automated
reformulation of the logical into linear constraints in a way that exhaustive algebraic transformations by405

the user (for example conversion of the Mixed Logical Dynamical (MLD) models into linear mixed-integer
inequality constraints as described in [65]) are avoided. For this purpose, it employs different standardized
methods such as the big-M, hull reformulation or the cutting-plane algorithm. Compared to other MILP-
approaches, GDP facilitates a modular integration of both logical and algebraic constraints in a unified way
and improves the interpretability of the optimization problem formulation [66].410

The classical form of a GDP can be represented by [64]:

min f(x) (7a)

s.t. g(x) ≤ 0 (7b)∨
i∈Dk

[
Yik

rik(x) ≤ 0

]
∀k ∈ K (7c)

Ω(Y ) = True (7d)

x ∈ X ⊆ Rn (7e)

Yik ∈ {True, False} (7f)

, where the minimization of an objective function (7a) is subject to global constraints (7b) and a set
of logical disjunctions k ∈ K, each representing a major discrete decision. Each disjunction k consists of
different selection alternatives, the disjuncts Dk (7c), which are linked by a logical OR-operator ∨. The415

i-th disjunct in the disjunction k is associated with the logic variable Yik (7f). When the Boolean variable
Yik is True, the respective constraints rik(x) ≤ 0 are imposed. There might be further logical propositions
(7d) modeling the relationship between the logic variables, often defining an exclusive-OR (applied to the
operation modes in the case study in Section 4) or in a ”at most one” relationship. x is assumed to correspond
to continuous variables that are closed and bounded in the set X (7e).420

The limitations respectively potential improvements of the toolchain consist in the manual formulation
of the different integer characteristics in Pyomo as they are not part of the Modelica (simulation) model
itself. The current generalized formulation allows an automated formulation in Pyomo for which just the
respective constrained variable, discrete set values, minimum part load bounds, minimum on/ off times or
operation mode characteristics have to be specified. By making use of the GDP and its disjunctive sets,425

the implementation of the operation modes is straightforward and intuitive. A disadvantage of the GDP
formulation is the necessary provision of variable bounds for each GDP-integrated variable, which does not
allow a constraint softening of the respective variable bounds.

Aside from that, the proposed approach does not support specific Modelica expressions, which are not
permitted by the CasADi compilation module of JModelica.org such as integer(x), pre(x), floor(x) and430

sign(x), which are expressions that introduce discontinuities and are not supported by IPOPT (further
unsupported expressions can be found under Chapter 9 in [67]). Model parts that include these expressions
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have to be transferred from Modelica to the modeling section in Pyomo and coupled to the linearized DAEs
at this point.

4. Results and discussion435

The performance of the developed toolchain is evaluated on the nonlinear Modelica use case of the coupled
optimization of energy demand and supply presented in Section 2. According to Fig. 3, the optimization
problem is split into a hierarchical optimization where the energy demand constitutes the upper layer and
the energy supply represents the lower layer MPC. The optimization problems are coupled by the reference
variable of the requested heating power Q̇ref(t) which is supplied to the convector and CCA in the energy440

demand model. In every MPC iteration, a new trajectory of the requested heating power over the prediction
horizon is sent from the upper to the lower layer MPC. It is assumed that the energy demand optimization
problem does not include any integer decision variables which is why it can be solved as a pure NLP based
on JModelica.org and IPOPT. The lower level optimization problem of the energy supply includes various
integer characteristics and thus, is handled by the proposed toolchain presented in Section 3.445

In the following, the different integer characteristics of the energy supply MPC are specified. The heat
pump is required to be operated above a part load ratio of 30 % of the nominal compressor power which
implies that below this threshold it is switched off. The on/ off control introduces a binary variable to the
optimization problem. In addition, the operation of the heat pump is restricted by minimum on and off
times. A minimum time of 2 h for both the on and off operation state is set to avoid oscillatory behavior450

and decrease tear and wear and maintenance costs. It is assumed that the pump located in the water circuit
between the storage and the heat pump can only be operated in discrete operation states. In order to evaluate
the implementation of operation modes, two different modes are established which refer to the control of
the heat pump and the pump in the circuit between the storage and heat pump. The first operation mode
describes the on operation state of the heat pump and allows for an unconstrained operation of the pump455

supplying the water to the condenser by manipulating ṁcond. In the second operation mode, during which
the heat pump is switched off and no thermal power is provided to the heating water circuit, the pump is
restricted to provide a water flow at the minimum level ṁcond,min. Thereby, unnecessary pump operation
and transport of water flow (which is not taken into account in the cost function) is avoided reducing wear
and tear to a minimum. The two modes are implemented via two disjunctive sets implicating that exactly460

one mode must be activated at any time.
In this case study, a focus is placed on the energy supply optimization problem in the lower layer. A

detailed description of the energy demand optimization problem in the upper layer minimizing thermal and
electrical energy consumption can be found in [56]. The nonlinear optimization problem of the energy supply
is formulated as follows with T = {k, .., k + N − 1} being the discretized prediction horizon (formulation465

before softening of variable bounds):
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min
ṁstor,cons(t),
ṁcond(t),

Q̇cond(t),δHP(t)

k+N−1∑
t=k

(α · Pel,HP(t) + β · (∆Q̇stor(t)− Q̇ref(t))
2
) ·∆t (8a)

s.t. F (t, dx, x, u, w, p) = 0 ∀t ∈ T (8b)

ṁstor,cons,min ≤ ṁstor,cons(t) ≤ ṁstor,cons,max ∀t ∈ T (8c)

ṁcond,min ≤ ṁcond(t) ≤ ṁcond,max ∀ṁcond(t) ∈ D, ∀t ∈ T (8d)

Q̇cond,min ≤ Q̇cond(t) ∀t ∈ T (8e)

δHP(t) · Pel,HP,min ≤ Pel,HP(t) ≤ δHP(t) · Pel,HP,max ∀t ∈ T (8f)

δHP(t+ k)− δHP(t+ k − 1) ≤ δHP(ωup)

∀ωup ∈ {t+ k, t+ k + 1, . . . ,min(t+N, t+ k +Tup
HP − 1)} ∀t ∈ T (8g)

δHP(t+ k − 1)− δHP(t+ k) ≤ 1− δHP(ωdown)

∀ωdown ∈ {t+ k, t+ k + 1, . . . ,min(t+N, t+ k +Tdown
HP − 1)} ∀t ∈ T (8h) Y1(t)

δHP(t) = 1

ṁcond(t) ≥ ṁcond,min

 ⊻

 Y2(t)

δHP(t) = 0

ṁcond(t) = ṁcond,min

 ∀t ∈ T (8i)

δHP(t) ∈ {0, 1} ∀t ∈ T (8j)

Yi(t) ∈ {True, False} ∀i ∈ {1, 2} ∀t ∈ T (8k)

In these equations, ṁstor,cons(t) corresponds to the water mass flow between storage and consumer,

ṁcond(t) to the water mass flow through the condenser, Q̇cond(t) to the thermal power provided by the
condenser and δHP(t) to the on/ off operation state of the heat pump. Pel,HP(t) is the electrical power

consumption of the heat pump, ∆Q̇stor(t) the heating power supplied by the storage to the energy demand470

and Q̇ref(t) the reference heating power requested by the energy demand in the upper level MPC. α and β
constitute weighting factors for the different terms of the cost function. The first term of the cost function 8a
comprises the electrical power consumption of the heat pump and the second term penalizes the deviation of
the provided from the requested heating power. As the original cost function is quadratic due to the second
term and since both the Jacobians and Hessians are integrated in the linearized optimization problem, an475

MIQP is solved.
The system DAEs in the nonlinear form are described by Eq. 8b. Both ṁstor,cons(t) and ṁcond(t)

are constrained by minimum and maximum bounds (Eq. 8c and 8d). ṁcond(t) is further restricted to
the discrete, integer set D of possible operation states at intervals of 2. Q̇cond(t) is only bounded by a
minimum value Q̇cond,min equal to 0 (Eq. 8e) as the heat pump operation is bounded by the minimum part480

load constraint including the upper bound in Eq. 8f. Eq. 8g and 8h describe the minimum on/ off time
constraints according to [19] with the minimum up time Tup

HP, the minimum down time Tdown
HP (both equal

to 2 h) and prediction horizon N. Eq. 8i represents the operation modes in the form of the disjunctive sets
specified by the GDP which are connected by an exclusive-OR forcing exactly one of the operation modes to
be active. Y1(t) and Y2(t) are Boolean variables indicating the activation status of each mode. The energy485

supply optimization problem consists of 74 DAEs and 81 variables after the BLT reduction (20 states, 54
algebraic variables, 4 control inputs and 3 external inputs).

The performance of the proposed toolchain on the hybrid nonlinear MPC use case based on time-variant
linearization around a trajectory (trajectory-LTV) is compared against control variants based on time-variant
linearization around a reference point (point-LTV), LTI models and a reference control concept of an NLP490

formulation of the optimization problem. The NLP is performed based on JModelica.org and IPOPT with
a post-processing after every MPC iteration. The post-processing is employed to approximate the different
integer characteristics as they do not form part of the NLP. For all control variants, an additional constraint
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that prescribes the top layer storage temperature at the end of the simulation horizon to be equal to a
prespecified value of 302 K is imposed to guarantee comparability between the approaches.495

The different control approaches are compared in terms of the Key Performance Indicators (KPIs)
tracking of the requested heating power (in the form of the Root Mean Square Error (RMSE)), electrical
energy consumption, deviation of simulated and optimized trajectories for the provided heating power ∆Q̇stor

(also as an indicator for the linearization error; in the form of the RMSE) and computational time ratio.
The computational time ratio quantifies the ratio of the computation time to the sampling time (period500

during which the building is controlled). If the quotient is smaller than 1, the control strategy is real-time
capable.

The used execution platform as well as optimization tools and settings are listed in Table 1. For the
algebraic reformulation of the GDP, the bigM transformation method is chosen.

Execution platform
OpenStack instance based on a Linux machine, Ubuntu 18.04,

8 vCPUs and 32 GB RAM

Optimization framework

Energy demand : JModelica.org 2.14, IPOPT 3.13.1, linear HSL

solver ma27 [68]

Energy supply : Pyomo 5.7.2, Gurobi 9.1.1, MIPGap: 0.01 %,

TimeLimit: 60 s

Discretization

For both energy demand and supply :

Collocation with 96 collocation elements with 2 collocation

points and piecewise constant control inputs

MPC parameters

For both energy demand and supply :

Prediction horizon: 24 h, sampling period: 15 min,

simulation horizon: 3 days (=72h) starting at 8 a.m.

Table 1: Optimization parameters

The evaluated KPIs for the different control approaches are given in Table 2. In the following, the505

corresponding control performance is detailed for every control variant.
In Fig. 7 the simulation results for the MIQP with LTV models based on time-variant linearization

around a trajectory (trajectory-LTV) are shown. For each MPC iteration, the linearization reference points
are updated at intervals of 15 min along the simulation trajectory. Hereinafter, this control approach is
referred to as the ”proposed approach”. The first subplot depicts the fulfillment of the requested heating510

power Q̇ref(t) by the provided power ∆Q̇stor(t) . The requested heating power is tracked very well by
the provided one resulting in an RMSE of 18.6 W. In order to evaluate the linearization error introduced
by the trajectory-LTV models, the optimized trajectories for the provided heating power are plotted as
well in the first subplot. The simulated and optimized trajectories show a good agreement throughout
the simulation horizon with an RMSE between the simulated and optimized trajectories of 5.2 W. This515

implies a small linearization error and accordingly, the time-variant linearization around a trajectory can
precisely approximate the nonlinear system behavior. In the second subplot, the water mass flow between
storage and consumer ṁstor,cons(t) is shown revealing a similar trend as the provided heating power. The
third subplot of the mass flow through the condenser ṁcond(t) exhibits the successful implementation of the
discrete operation states and the operation modes. The mass flow values are just chosen from the discrete520

set of integer numbers at intervals of 2. In combination with the last subplot of the heat pump operation
states, it can be derived that the mass flow through the condenser is just operated above its minimum bound
when the heat pump is operated otherwise it is restricted to its minimum value. In the fourth subplot, the
trajectories of the storage temperatures (top and bottom layer) including the inlet temperatures from the
consumer and heat pump circuits are shown. To be capable of providing the heating power demand during525

days two and three, which is higher compared to day one, the temperature of the storage is increased in
an anticipatory manner by adding more thermal energy than is released to the consumer side. As shown in

16



the ”Heat pump power” subplot, the trajectories of the electrical heat pump power fulfill the minimum part
load constraint. The heat pump is either switched off or operated above the minimum part load of 30 %
of the nominal power while at the same time satisfying the maximum bound. Likewise, the minimum on530

and off times of 2 h for the heat pump operation are complied with as depicted in the ”Heat pump state”
subplot showing a smooth, non-oscillatory behavior of the heat pump operation state. The electrical energy
consumption is 14 034 kJ and the computational time ratio is 0.15. Accordingly, the approach is 7 faster
than real-time.

Figure 7: Simulation results of the MIQP - trajectory-LTV

In Fig. 8 the results for the MIQP including LTV models based on time-variant linearization around a535

reference point (point-LTV) are depicted. The same optimization settings as for the linearization around the
trajectory (trajectory-LTV) are applied. The current operating point (t = 0) of every new MPC iteration
is chosen as the linearization reference point. Compared to the approach based on the trajectory-LTV
models, additional outliers at hours 4–8, 8–12 and especially 34–46 characterize the first subplot introducing
deviations between the provided and requested heating power whereas for most of the prediction horizon the540

tracking of the requested heating power performs well. As the partly high deviation between simulated and
optimized provided heating power reveals, the linearization reference points chosen for the point-LTV models
are not able to reproduce the system dynamics over the full operating range. As an example, this results in a
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decrease of the storage temperatures below the level of the consumer return temperatures during hours 36-44
as shown in the ”Storage temperatures” subplot. In addition, in the ”Heat pump power” subplot it can be545

seen that there are violations of the upper variable bound around hours 45 and 49. The energy consumption
is 11.7 % lower compared to the linearization around the trajectory with 12 395 kJ which can be attributed
to the worse tracking of the heating power (especially around hours 34–46) with an RMSE of heating power
tracking of 132.8 W (614 % higher compared to trajectory-LTV). The constraints for minimum part load,
minimum on/ off times and the operation modes including discrete operation states are fulfilled for this550

control approach as well apart from a slight violation of the minimum part load at hours 70–72 and the
minimum on/ off times at hour 17. The RMSE of the deviation of simulated and optimized trajectories for
∆Q̇stor is 134.0 W and is 2477 % higher compared to the control approach based on the trajectory-LTV
models. This can be attributed to a higher induced linearization error and reduced approximation accuracy
using the point-LTV models. The computational time ratio is 0.14.555

Figure 8: Simulation results of the MIQP - point-LTV

Fig. 9 presents the results for the MIQP based on time-invariant linearization around a reference point
(LTI) using the same optimization settings as for the first two approaches. The linearization is performed
just once after the first MPC iteration around the operating point t = 0 at this time. An MPC iteration
is performed before the linearization to find a linearization reference point where the system dynamics are
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already initialized properly. Compared to the first two control approaches, the results show a consider-560

ably poorer control performance with a significantly increased linearization error. In the first subplot, the
trajectory for the provided heating power shows a partly similar but significantly shifted trend compared
to the requested power trajectory. This results in a high RMSE of the heating power tracking of 399 W
(2046 % higher compared to the proposed approach) and an RMSE of the deviation between the simulated
and optimized trajectories for ∆Q̇stor of 398 W (7562 % higher). Additionally, the ”Heat pump power”565

subplot reveals substantial violations of the upper variable bound. Thus, the operating point chosen as the
reference point for performing the time-invariant linearization does not suffice for reproducing the system
dynamics and operating conditions throughout the simulation horizon.

Figure 9: Simulation results of the MIQP - LTI

In Fig. 10 the control performance of the NLP including post-processing and approximation of the integer
characteristics after every MPC iteration is presented. The discrete operation states from Eq. 8d as well as570

the minimum part load constraint from Eq. 8f are taken into account by rounding the optimization results
based on the most recent evaluated value of the heat pump COP. The minimum on/ off times are forced in
every MPC iteration by comparing the spent time in a heat pump state with the specified minimum time.
The different operation modes are imposed on ṁcond(t) depending on the current operation state of the
heat pump. Due to the integration of the post-processing the NLP leads to worse KPIs for the tracking575
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of the requested heating power and the deviation between simulated and optimized trajectories for ∆Q̇stor

compared with the proposed approach as the actually implemented variables differ from the optimized
ones. The first subplot reveals this behavior with slight deviations between the ”provided” (simulated after
post-processing) and ”provided (optimized)” heating power. The RMSE of the heating power tracking is
37.4 W and 101 % higher in comparison to the proposed approach. The consumed electrical energy is580

14 040 kJ which is almost identical to the proposed approach and the RMSE of the deviation between
the simulated and optimized trajectories for ∆Q̇stor increases by 310 % (with 21.3 W) compared to the
proposed approach. The computational time ratio of the approach is 0.04. It should be noted that for this
case study the NLP including post-processing achieves sufficient control performance; however, for larger
and more complex systems with more binary or integer constraints, if-then-else relationships and particularly585

multiple operation modes including switching dynamics, the formulation of the post-processing will become
cumbersome up to impossible. Additionally, the post-processing may lead to a high deviation between the
optimized and actually implemented variables and potential violations of constraints.

Figure 10: Simulation results of the NLP including post-processing

To conclude, a Modelica-based toolchain for nonlinear hybrid MPC based on automated time-variant
linearization around a reference trajectory has been developed and its control performance is compared590

in a nonlinear case study against different control variants with a lower relinearization frequency and an
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RMSE

heating power

tracking in W

Consumed electrical

energy in kJ

RMSE deviation of

sim./ opt. trajectory

for ∆Q̇stor in W

Comp. time in s /

comp. time ratio

MIQP

trajectory-LTV
18.6 14 034 5.2 39 849 / 0.15

MIQP

point-LTV
132.8 12 395 134.0 36 578 / 0.14

MIQP

LTI
399.1 19 612 398.4 30 939 / 0.12

NLP

incl. post-processing
37.4 14 040 21.3 10 188 / 0.04

Table 2: Comparison of the KPIs for the different control approaches

NLP with an approximation of the integer characteristics. The control performance results demonstrate a
small linearization error induced by the time-variant linearization module and a successful real-time capable
implementation of all integer characteristics and constraints. With respect to the applied KPIs the proposed
approach outperforms the reference control variants with a lower relinearization frequency and the NLP595

approximating the integer characteristics.

5. Conclusion and outlook

In this paper, a toolchain for nonlinear hybrid MPC of building energy systems based on Modelica mod-
els is presented which bridges the gap between Modelica and mixed-integer optimization. The approach
combines the integration of both nonlinearities (characteristic of building energy systems and integrated600

HVAC) and integer decision variables which often arise due to discrete operation states, on/ off control,
if-then-else relationships or operation modes. The toolchain builds upon a high-accuracy time-variant lin-
earization approach, which transforms the nonlinear Modelica optimization problem into a linearized state-
space representation in every MPC iteration. Based on the linearization output, an optimization problem
is automatically formulated in the modeling framework Pyomo which can be extended by various integer605

characteristics and is solved by the MIQP solver Gurobi.
The functionality of the approach is demonstrated in a simulative control of a building energy system

based on a nonlinear Modelica case study. The global optimization problem is split into the subproblems
of energy demand and energy supply which are solved within a hierarchical optimization. The energy
demand model comprises a thermal zone that is heated by a convector and CCA and is solved as an NLP610

based on JModelica.org and IPOPT. The energy supply model provides the heating energy to the thermal
zone and consists of a coupled model of a thermal buffer storage and a heat pump. The energy supply
optimization problem includes on/ off control including minimum part load, minimum on/ off times, discrete
operation states and different operation modes and is solved as an MIQP based on the proposed toolchain.
The simulation results demonstrate a good performance of the MIQP approach based on the time-variant615

linearization including a small linearization error, a successful real-time capable implementation of all integer
characteristics and outperforms the reference control concepts with a lower relinearization frequency and
the NLP approximating the integer characteristics.

Future work and improvements consist in integrating the nonlinear hybrid MPC in a distributed MPC
framework, application to use cases with more complex operation modes including switching dynamics,620

model calibration and the practical implementation of the approach.
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